

A Different Approach on Pythagorean Triangle, Which Satisfies (one leg of right triangle 2pq) - $6\frac{(Area)}{(Perimeter)} = K$

S. Sriram, E. Kavitha Rani

¹Department of Mathematics, National College, Trichy, Tamil Nadu India ²Department of Mathematics, Government Arts College, Thiruverumbur, Trichy, Tamil Nadu India

ABSTRACT

Patterns of Pythagorean Triangle for each of which (*one leg of right triangle 2pq*) – $6\frac{(Area)}{(Perimeter)}$ may be expressed as a positive integer(K). A few interesting relations are also given.

Keywords: Pythagorean Triangle, Nasty Numbers.

I. INTRODUCTION

The method of obtaining three non-zero integers x, y and z under certain relations satisfying the equation $x^2 + y^2 = z^2$ has been a matter of interest to various mathematicians [1 to 7]. In [8 to 13] special Pythagorean Problems are studied. In this communication, we present yet another interesting Pythagorean triangle where in each of which

$$\binom{one \ leg \ of \ right}{triangle \ 2pq} - 6 \frac{(Area)}{(Perimeter)} = K.$$
 A few

interesting relation among the solutions are given.

Notation

1.
$$T_{m,n} = n \left[1 + \frac{(n-1)(m-2)}{2} \right] = Polygonal$$

number of rank n, with sides m.

II. METHODS AND MATERIAL

The most cited solution of the Pythagorean equation $x^2 + y^2 = z^2$ is

$$x = 2pq$$

$$y = p^{2} - q^{2} \text{ where } p > q > 0 \qquad (1)$$

$$z = p^{2} + q^{2}$$

Denoting the Area and the Perimeter of the above Pythagorean triangle by A and P respectively, the assumption that the ratio A/P can be expressed as the equation $\begin{pmatrix} one \ leg \ of \ right \\ triangle \ 2pq \end{pmatrix} - 6 \begin{pmatrix} A \\ P \end{pmatrix} = K$ where K is a non-zero integer, which leads to the equation

$$3q^2 - pq = K \tag{2}$$

In which follows we are present pattern of integral solution of (2) and thus in view of (1), the integral solution of (2) are obtained.

Pattern I

Let
$$K = \alpha^3$$
 which leads (2) as

$$3q^2 - pq = \alpha^3 \tag{3}$$

Choosing $q = \alpha^2$, $3q - p = \alpha$ in (3) and solving we get

$$p = 3\alpha^2 - \alpha \text{ and } q = \alpha^2 \tag{4}$$

In which follows, we obtain the values of x, y, z

$$x = 2pq \quad \Rightarrow \quad x(\alpha) = 6\alpha^4 - 2\alpha^3$$
 (5)

$$y = p^2 - q^2 \Rightarrow y(\alpha) = 8\alpha^4 - 6\alpha^3 + \alpha^2 \qquad (6)$$

$$z = p^2 + q^2 \Longrightarrow z(\alpha) = 10\alpha^4 - 6\alpha^3 + \alpha^2 \qquad (7)$$

Few examples are given

α	р	q	х	у	Z
4	44	16	1408	1680	2192
5	70	25	3500	4275	5525
7	140	49	13720	17199	22001
9	234	81	37908	48195	61317
11	352	121	85184	109263	138545

Properties

- 1. $x + 2\alpha^3$ is six times a Quartic integer.
- 2. $x(\alpha) + 2\alpha^3$ is a nasty number.
- 3. 2(z y) is a perfect square.
- 4. 3(z y) is a nasty number.
- 5. $z y \equiv 0 \pmod{2}$
- 6. $x + y + z \equiv 0 \pmod{2}$

7.
$$(x + y + z) - 4\alpha(4\alpha - 1)T_{5,\alpha} = 0$$

- 8. $x (2\alpha)^2 T_{5,\alpha} = 0$
- 9. 2(y + z) is a perfect square

10.
$$y - 2\alpha^2 T_{10,\alpha} - T_{4,\alpha} = 0$$

11.
$$z - 4\alpha^2 T_{7,\alpha} - T_{4,\alpha} = 0$$

12. $(x + y - z) - 2\alpha^2 T_{6,\alpha} = 0$

Pattern II

Assuming
$$K = \alpha^4 (\alpha > 0)$$
 which leads (2) as
 $3q^2 - pq = \alpha^4$ (8)

Case i:

Choosing $q = \alpha^2$, $3q - p = \alpha^2$ in (8) and solving we **Properties** get

 $p = 2\alpha^2$ and $q = \alpha^2$ (9)

In which follows, we obtain the values of x, y, z $x = 2pq \implies x(\alpha) = 4\alpha^4$ (10)

$$y = p^2 - q^2 \Rightarrow y(\alpha) = 3\alpha^4$$
 (11)

$$z = p^2 + q^2 \Rightarrow z(\alpha) = 5\alpha^4 \tag{12}$$

Few examples are given

α	р	q	х	У	z
2	8	4 64		48	80
8	128	64	16384	12288	20480
10	200	100	40000	30000	50000
12	288	144	82944	62208	103680
14	392	196	153664	115248	192080

Properties

- 1. x + y + z is twelve times a Quartic integer.
- 2. 6(x y) is a nasty number.
- 3. 6 (z y) is a nasty number.
- 4. z + x y is a nasty number.
- 5. 2(x + y z) is a perfect square.
- 6. y + z x is a perfect square.

Case ii:

Choosing $q = \alpha^3$, $3q - p = \alpha$ in (8) and solving we get

$$p = 3\alpha^3 - \alpha \text{and} q = \alpha^3 \tag{13}$$

In which follows, we obtain the values of x, y, z

$$x = 2pq \implies x(\alpha) = 6\alpha^6 - 2\alpha^4$$
 (14)

$$y = p^2 - q^2 \Longrightarrow y(\alpha) = 8\alpha^6 - 6\alpha^4 + \alpha^2 \quad (15)$$

 $z = p^2 + q^2 \Rightarrow z(\alpha) = 10\alpha^6 - 6\alpha^4 + \alpha^2$ (16)

Few examples are given

α	р	q	х	У	Z
4	188	64	24064 31248		39440
5	370	125	92500	121275	152525
7	1022	343	701092	926835	1162133
10	2990	1000	2980000	7949100	9940100
3	78	27	4212	5355	6813

1. 2(z - y) is a perfect square.

2.
$$(z - y) - 2(T_{4,\alpha})^3 = 0$$
.

3. $(x + y + z) - 4\alpha(4\alpha - 1)T_{5,\alpha} = 0.$

4.
$$v - k - 2k T_{10\alpha} = 0$$
 where $k = \alpha^2$

5.
$$y = 3kT_{8,k} - 2(k-1)T_{3,k}$$
 where $k = \alpha^2$.

$$6. \quad x + y + z \equiv 0 \pmod{2}$$

7.
$$z - k - 4k T_{7,k} = 0$$
 where $k = \alpha^2$.

Pattern III

Assuming
$$K = \alpha^5 (\alpha > 0)$$
 which leads (2) as
 $3q^2 - pq = \alpha^5$ (17)

Case i:

Choosing $q = \alpha^3$, $3q - p = \alpha^2$ in (17) and solving we get

$$p = 3\alpha^3 - \alpha^2 \text{and} q = \alpha^3 \tag{18}$$

In which follows, we obtain the values of x, y, z $x = 2pq \implies x(\alpha) = 6\alpha^6 - 2\alpha^5$ (19)

$$y = p^2 - q^2 \Rightarrow y(\alpha) = 8\alpha^6 - 6\alpha^5 + \alpha^4 \quad (20)$$

$$z = p^2 + q^2 \Longrightarrow z(\alpha) = 10\alpha^6 - 6\alpha^5 + \alpha^4 \quad (21)$$

Few examples given

α	р	q	х	У	Z
2	20	8	320	336	464
4	176	64	22528	26880	35072
5	350	125	87500	106875	138125
8	1472	512	1507328	1904640	2428928
10	2900	1000	5800000	7410000	9410000

$y = p^2 - q^2 \Longrightarrow y(\alpha) = 9\alpha^8 - 6\alpha^5 + \alpha^2 - \alpha^4$ (24)

$$z = p^2 + q^2 \Rightarrow z(\alpha) = \alpha^8 + 9\alpha^6 - 6\alpha^5 + \alpha^2$$
(25)

Properties

- 1. $(y z) = 2k [(2k)^2 (k 1) T_{3,k})$ where $k = \alpha^2$.
- 2. $x \equiv 0 \pmod{2}$.

3.
$$(y - x) - \alpha^2 (3\alpha^6 + 1) + 8\alpha T_{3,\alpha} = 0.$$

- 4. $z(\alpha) \alpha^5(\alpha^2(\alpha + 9) 6)$ is a perfect square.
- 5. $y(\alpha) \alpha^4 (3\alpha(3\alpha^3 2) 1)$ is a perfect square

Few examples are given

Properties

- 1. 2(z y) is perfect square.
- 2. 3(z y) is nasty number.
- 3. $x(\alpha) 2\alpha^4 [T_{4,\alpha} + T_{6,\alpha}] = 0.$
- 4. $y(\alpha) \alpha^4 [2T_{8,\alpha} + 1] = 0.$
- 5. $z(\alpha) \alpha^4 [4T_{7,\alpha} + 1] = 0.$
- 6. 2(y + z) is a perfect square.

7.
$$y + z - 8 (T_{5,\alpha})^2 = 0$$

8. $(z - x) - 4\alpha^2 T_{3,\alpha^2} + \alpha^3 T_{8,\alpha} = 0.$

Case ii:

Choosing $q = \alpha^4$, $3q - p = \alpha$ in (17) and solving we get

$$p = 3\alpha^4 - \alpha \text{ and } q = \alpha^4 \tag{22}$$

In which follows, we obtain the values of x, y, z

 $x = 2pq \implies x(\alpha) = 6\alpha^8 - 2\alpha^5$ (23)

α	р	q	Х	У	Z
1	2	1	4	3	5
2	46	16	1472	1860	2372
3	241	81	39042	51520	64642
4	764	256	391168	518160	619232
5	1870	625	2337500	3106275	3887525

Pattern IV

Let
$$K = \alpha \beta$$
, $\beta > \alpha > 0$ which leads (2) as
 $3q^2 - pq = \alpha \beta$ (26)

Choosing $q = \beta$, $3q - p = \alpha$ in (26) and solving we get

$$p = 3\beta - \alpha \text{ and} q = \beta \tag{27}$$

In which follows, we obtain the values of x, y, z $x = 2pq \Rightarrow x(\alpha, \beta) = 6\beta^2 - 2\alpha\beta$ (28)

$$y = p^{2} - q^{2} \Rightarrow y(\alpha, \beta) = 8\beta^{2} - 6\alpha\beta + \alpha^{2}$$
(29)

$$z = p^{2} + q^{2} \Rightarrow z(\alpha, \beta) = 10\beta^{2} - 6\alpha\beta + \alpha^{2}$$
(30)

Few examples are given

α	β	р	q	х	У	Z
1	2	5	2	20	21	29
2	3	7	3	42	40	58
4	5	11	5	110	96	146
6	7	17	7	238	240	338
7	8	18	8	288	260	388

Recurrence relation

- 1. $x(\alpha + 1, \beta + 1) 2x(\alpha, \beta) + x(\alpha 1, \beta 1) = 8$
- 2. $y(\alpha + 1, \beta + 1) 2y(\alpha, \beta) + y(\alpha 1, \beta 1) = 8$
- 3. $z(\alpha + 1, \beta + 1) 2z(\alpha, \beta) + z(\alpha 1, \beta 1) = 10$

Properties

- 1. $x(1,\beta) \equiv 0 \pmod{2}$
- 2. $y(1,\beta) 2T_{10,\beta} 1 = 0.$
- 3. $z(1,\beta) 4T_{7,\beta} 1 = 0$
- 4. $x(1,\beta) 12T_{3,\beta} + 8\beta = 0$
- 5. $y(1,\beta) 1 \equiv 0 \pmod{2}$
- 6. $z(1,\beta) 1 \equiv 0 \pmod{2}$
- 7. $z(1,\beta) x(1,\beta)$ is a perfect square.
- 8. 8. $z(1,\beta) y(1,\beta)$ is two times a perfect square.
- 9. $x(1,\beta) + y(1,\beta) z(1,\beta) + 2\beta$ is a perfect square.
- 10. $x(1,\beta+1) 12T_{3,\beta} 4(\beta+1) = 0$
- 11. $y(1, \beta + 1) 16T_{3,\beta} (2\beta + 3) = 0$
- 12. $z(1,\beta+1) 20T_{3,\beta} (4\beta+5) = 0$
- 13. $3[y(1, \beta + 1) x(1, \beta + 1)] + 3$ is a nasty number.
- 14. $z(1,\beta+1) x(1,\beta+1)$ is a perfect square.

15. $z(1,\beta+1) - y(1,\beta+1)$ is a perfect square.

III. CONCLUSION

One may search for other patterns of Pythagorean triangle under consideration.

IV. REFERENCES

- [1] L.E. Dickson, History of the Theory of Numbers, Chelsea Publishing Company, New York, 1952.
- [2] Daniel Shanks, "Solved and Unsolved Problems in Number Theory", Spartan Books, New York, 1971.
- [3] Paulo Ribenboim, "Fermat's Last Theorem for Amateurs". Sprinter-Verlag, New York, 1999.
- [4] Albert H. Beiler, "Recreations in the Theory of Numbers", Dover Publications, New York, 1963.
- [5] S.B. Malik, "Basic Number Theory", Vikas Publishing House Pvt. Limited, New Delhi,
- [6] L.J. Mordell, Diophatine Equations, Academic Press, New York, 1969.
- [7] Niven, Ivan, Zuckermann, S. Herbert, Montgomery and L.Hugh, An introduction to the Theory of Numbers, Jhon Wiley and Sons. Inc, New York, 2004.
- [8] M.A. Gopalan and S. Devibala, Pythagorean Triangle: A Treassure House, Proceeding of the KMA National Seminar on Algebra, Number Theory and Applications to Codeing and Cryptanalysis, Little Flower College, Guruvayur, September 16-18, 2004.
- [9] M.A. Gopalan and R. Anbuselvi, A Special Pythagorean Triangle, ActaCienciaIndica XXXI M, No. 1, p. 053, 2005.
- [10] M.A. Gopalan and S. Devibala, On a Pythagorean Problem, ActaCienciaIndia XXXIIM, No. 4, p. 1451, 2006.
- B.L. Bhatia and SupriyaMohanty, Nasty Numbers and their Characterizations, Mathematical Education, p. 34-37, July – Sep. 1985.