A Different Approach on Pythagorean Triangle, Which Satisfies (one leg of right triangle $2 p q$) $-6 \frac{(\text { Area) }}{(\text { Perimeter })}=K$

S. Sriram, E. Kavitha Rani
${ }^{1}$ Department of Mathematics, National College, Trichy, Tamil Nadu India
${ }^{2}$ Department of Mathematics, Government Arts College, Thiruverumbur, Trichy, Tamil Nadu India

Abstract

Patterns of Pythagorean Triangle for each of which (one leg of right triangle 2pq) $6 \frac{(\text { Area })}{(\text { Perimeter })}$ may be expressed as a positive integer(K). A few interesting relations are also given.

Keywords: Pythagorean Triangle, Nasty Numbers.

I. INTRODUCTION

The method of obtaining three non-zero integers x, y and z under certain relations satisfying the equation $x^{2}+y^{2}=z^{2}$ has been a matter of interest to various mathematicians [1 to 7]. In [8 to 13] special Pythagorean Problems are studied. In this communication, we present yet another interesting Pythagorean triangle where in each of which
$\binom{$ one leg of right }{ triangle $2 p q}-\mathbf{6} \frac{(\text { Area })}{(\text { Perimeter })}=\boldsymbol{K}$. A few interesting relation among the solutions are given.

Notation

1. $\mathrm{T}_{\mathrm{m}, \mathrm{n}}=\mathrm{n}\left[1+\frac{(n-1)(m-2)}{2}\right]=$ Polygonal number of rank n , with sides m .

II. METHODS AND MATERIAL

The most cited solution of the Pythagorean equation $x^{2}+y^{2}=z^{2}$ is

$$
\begin{equation*}
x=2 p q \tag{1}
\end{equation*}
$$

$y=p^{2}-q^{2}$ where $\mathrm{p}>\mathrm{q}>0$
$\mathrm{z}=\mathrm{p}^{2}+\mathrm{q}^{2}$
Denoting the Area and the Perimeter of the above Pythagorean triangle by A and P respectively, the assumption that the ratio A / P can be expressed as the equation $\binom{$ one leg of right }{ triangle $2 \boldsymbol{p q}}-\mathbf{6}\left(\frac{\boldsymbol{A}}{\boldsymbol{P}}\right)=K$ where K is a non-zero integer, which leads to the equation

$$
\begin{equation*}
3 q^{2}-p q=K \tag{2}
\end{equation*}
$$

In which follows we are present pattern of integral solution of (2) and thus in view of (1), the integral solution of (2) are obtained.

Pattern I

$$
\begin{align*}
& \text { Let } K=\alpha^{3} \text { which leads (2) as } \\
& 3 q^{2}-p q=\alpha^{3} \tag{3}
\end{align*}
$$

Choosing $q=\alpha^{2}, 3 q-p=\alpha$ in (3) and solving we get

$$
\begin{equation*}
p=3 \alpha^{2}-\alpha \text { and } q=\alpha^{2} \tag{4}
\end{equation*}
$$

In which follows, we obtain the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$

$$
\begin{align*}
& x=2 p q \Rightarrow x(\alpha)=6 \alpha^{4}-2 \alpha^{3} \tag{5}\\
& y=p^{2}-q^{2} \Rightarrow y(\alpha)=8 \alpha^{4}-6 \alpha^{3}+\alpha^{2} \tag{6}\\
& z=p^{2}+q^{2} \Rightarrow z(\alpha)=10 \alpha^{4}-6 \alpha^{3}+\alpha^{2} \tag{7}
\end{align*}
$$

Few examples are given

α	p	q	x	y	z
4	44	16	1408	1680	2192
5	70	25	3500	4275	5525
7	140	49	13720	17199	22001
9	234	81	37908	48195	61317
11	352	121	85184	109263	138545

Properties

1. $x+2 \alpha^{3}$ is six times a Quartic integer.
2. $x(\alpha)+2 \alpha^{3}$ is a nasty number.
3. $2(z-y)$ is a perfect square.
4. $3(z-y)$ is a nasty number.
5. $z-y \equiv 0(\bmod 2)$
6. $x+y+z \equiv 0(\bmod 2)$
7. $(x+y+z)-4 \alpha(4 \alpha-1) T_{5, \alpha}=0$
8. $x-(2 \alpha)^{2} T_{5, \alpha}=0$
9. $2(y+z)$ is a perfect square
10. $y-2 \alpha^{2} T_{10, \alpha}-T_{4, \alpha}=0$
11. $z-4 \alpha^{2} T_{7, \alpha}-T_{4, \alpha}=0$
12. $(x+y-z)-2 \alpha^{2} T_{6, \alpha}=0$

Pattern II

Assuming $K=\alpha^{4}(\alpha>0)$ which leads (2) as

$$
\begin{equation*}
3 q^{2}-p q=\alpha^{4} \tag{8}
\end{equation*}
$$

Case i:

Choosing $q=\alpha^{2}, 3 q-p=\alpha^{2}$ in (8) and solving we get

$$
\begin{equation*}
p=2 \alpha^{2} \text { and } q=\alpha^{2} \tag{9}
\end{equation*}
$$

In which follows, we obtain the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$

$$
\begin{align*}
& x=2 p q \Rightarrow x(\alpha)=4 \alpha^{4} \tag{10}\\
& y=p^{2}-q^{2} \Rightarrow y(\alpha)=3 \alpha^{4} \tag{11}\\
& z=p^{2}+q^{2} \Rightarrow z(\alpha)=5 \alpha^{4} \tag{12}
\end{align*}
$$

Few examples are given

α	p	q	x	y	z
2	8	4	64	48	80
8	128	64	16384	12288	20480
10	200	100	40000	30000	50000
12	288	144	82944	62208	103680
14	392	196	153664	115248	192080

Properties

1. $x+y+z$ is twelve times a Quartic integer.
2. $6(x-y)$ is a nasty number.
3. $6(z-y)$ is a nasty number.
4. $z+x-y$ is a nasty number.
5. $2(x+y-z)$ is a perfect square.
6. $y+z-x$ is a perfect square.

Case ii:

Choosing $q=\alpha^{3}, 3 q-p=\alpha$ in (8) and solving we get

$$
\begin{equation*}
p=3 \alpha^{3}-\alpha \operatorname{and} q=\alpha^{3} \tag{13}
\end{equation*}
$$

In which follows, we obtain the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$

$$
\begin{equation*}
x=2 p q \quad \Rightarrow x(\alpha)=6 \alpha^{6}-2 \alpha^{4} \tag{14}
\end{equation*}
$$

$y=p^{2}-q^{2} \Rightarrow y(\alpha)=8 \alpha^{6}-6 \alpha^{4}+\alpha^{2}$
$z=p^{2}+q^{2} \Rightarrow z(\alpha)=10 \alpha^{6}-6 \alpha^{4}+\alpha^{2}$
Few examples are given

α	p	q	x	y	z
4	188	64	24064	31248	39440
5	370	125	92500	121275	152525
7	1022	343	701092	926835	1162133
10	2990	1000	2980000	7949100	9940100
3	78	27	4212	5355	6813

Properties

1. $2(z-y)$ is a perfect square.
2. $(z-y)-2\left(T_{4, \alpha}\right)^{3}=0$.
3. $(x+y+z)-4 \alpha(4 \alpha-1) T_{5, \alpha}=0$.
4. $y-k-2 k T_{10, \alpha}=0$ where $k=\alpha^{2}$.
5. $y=3 k T_{8, k^{-}} 2(k-1) T_{3, k}$ where $k=\alpha^{2}$.
6. $x+y+z \equiv 0(\bmod 2)$
7. $z-k-4 k T_{7, k}=0$ where $k=\alpha^{2}$.

Pattern III

Assuming $K=\alpha^{5}(\alpha>0)$ which leads (2) as

$$
\begin{equation*}
3 q^{2}-p q=\alpha^{5} \tag{17}
\end{equation*}
$$

Case i:

Choosing $q=\alpha^{3}, 3 q-p=\alpha^{2}$ in (17) and solving we get

$$
\begin{equation*}
p=3 \alpha^{3}-\alpha^{2} \text { and } q=\alpha^{3} \tag{18}
\end{equation*}
$$

In which follows, we obtain the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ $x=2 p q \quad \Rightarrow x(\alpha)=6 \alpha^{6}-2 \alpha^{5}$
$y=p^{2}-q^{2} \Rightarrow y(\alpha)=8 \alpha^{6}-6 \alpha^{5}+\alpha^{4}$
$z=p^{2}+q^{2} \Rightarrow z(\alpha)=10 \alpha^{6}-6 \alpha^{5}+\alpha^{4}$
Few examples given

α	p	q	x	y	z
2	20	8	320	336	464
4	176	64	22528	26880	35072
5	350	125	87500	106875	138125
8	1472	512	1507328	1904640	2428928
10	2900	1000	5800000	7410000	9410000

Properties

1. $2(z-y)$ is perfect square.
2. $3(z-y)$ is nasty number.
3. $x(\alpha)-2 \alpha^{4}\left[T_{4, \alpha}+T_{6, \alpha}\right]=0$.
4. $y(\alpha)-\alpha^{4}\left[2 T_{8, \alpha}+1\right]=0$.
5. $z(\alpha)-\alpha^{4}\left[4 T_{7, \alpha}+1\right]=0$.
6. $2(y+z)$ is a perfect square.
7. $y+z-8\left(T_{5, \alpha}\right)^{2}=0$.
8. $(z-x)-4 \alpha^{2} T_{3, \alpha^{2}}+\alpha^{3} T_{8, \alpha}=0$.

Case ii:

Choosing $q=\alpha^{4}, 3 q-p=\alpha$ in (17) and solving we get
$p=3 \alpha^{4}-\alpha$ and $q=\alpha^{4}$
In which follows, we obtain the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$

$$
\begin{equation*}
x=2 p q \quad \Rightarrow x(\alpha)=6 \alpha^{8}-2 \alpha^{5} \tag{23}
\end{equation*}
$$

$y=p^{2}-q^{2} \Rightarrow y(\alpha)=9 \alpha^{8}-6 \alpha^{5}+\alpha^{2}-\alpha^{4}$
$z=p^{2}+q^{2} \Rightarrow z(\alpha)=\alpha^{8}+9 \alpha^{6}-6 \alpha^{5}+\alpha^{2}$

Properties

1. $(y-z)=2 k\left[(2 k)^{2}(k-\right.$
1) $-T_{3, k}$) where $k=\alpha^{2}$.
2. $x \equiv 0(\bmod 2)$.
3. $(y-x)-\alpha^{2}\left(3 \alpha^{6}+1\right)+8 \alpha T_{3, \alpha}=0$.
4. $z(\alpha)-\alpha^{5}\left(\alpha^{2}(\alpha+9)-6\right)$ is a perfect square.
5. $y(\alpha)-\alpha^{4}\left(3 \alpha\left(3 \alpha^{3}-2\right)-1\right)$ is a perfect square

Few examples are given

α	p	q	x	y	z
1	2	1	4	3	5
2	46	16	1472	1860	2372
3	241	81	39042	51520	64642
4	764	256	391168	518160	619232
5	1870	625	2337500	3106275	3887525

Pattern IV

Let $K=\alpha \beta, \quad \beta>\alpha>0$ which leads (2) as

$$
\begin{equation*}
3 q^{2}-p q=\alpha \beta \tag{26}
\end{equation*}
$$

Choosing $q=\beta, 3 q-p=\alpha$ in (26) and solving we get

$$
\begin{equation*}
p=3 \beta-\alpha \text { and } q=\beta \tag{27}
\end{equation*}
$$

In which follows, we obtain the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ $x=2 p q \Rightarrow x(\alpha, \beta)=6 \beta^{2}-2 \alpha \beta(28)$
$y=p^{2}-q^{2} \Rightarrow y(\alpha, \beta)=8 \beta^{2}-6 \alpha \beta+\alpha^{2}$

$$
\begin{equation*}
z=p^{2}+q^{2} \Rightarrow z(\alpha, \beta)=10 \beta^{2}-6 \alpha \beta+\alpha^{2} \tag{30}
\end{equation*}
$$

Few examples are given

α	β	p	q	x	y	z
1	2	5	2	20	21	29
2	3	7	3	42	40	58
4	5	11	5	110	96	146
6	7	17	7	238	240	338
7	8	18	8	288	260	388

Recurrence relation

1. $x(\alpha+1, \beta+1)-2 x(\alpha, \beta)+x(\alpha-$ $1, \beta-1)=8$
2. $y(\alpha+1, \beta+1)-2 y(\alpha, \beta)+y(\alpha-$ $1, \beta-1)=8$
3. $z(\alpha+1, \beta+1)-2 z(\alpha, \beta)+z(\alpha-$ $1, \beta-1)=10$

Properties

1. $x(1, \beta) \equiv 0(\bmod 2)$
2. $y(1, \beta)-2 T_{10, \beta}-1=0$.
3. $z(1, \beta)-4 T_{7, \beta}-1=0$
4. $x(1, \beta)-12 T_{3, \beta}+8 \beta=0$
5. $y(1, \beta)-1 \equiv 0(\bmod 2)$
6. $z(1, \beta)-1 \equiv 0(\bmod 2)$
7. $z(1, \beta)-x(1, \beta)$ is a perfect square.
8. 8. $z(1, \beta)-y(1, \beta)$ is two times a perfect square.
1. $x(1, \beta)+y(1, \beta)-z(1, \beta)+2 \beta$ is a perfect square.
2. $x(1, \beta+1)-12 T_{3, \beta}-4(\beta+1)=0$
3. $y(1, \beta+1)-16 T_{3, \beta}-(2 \beta+3)=0$
4. $z(1, \beta+1)-20 T_{3, \beta}-(4 \beta+5)=0$
5. $3[y(1, \beta+1)-x(1, \beta+1)]+3$ is a nasty number.
6. $z(1, \beta+1)-x(1, \beta+1)$ is a perfect square.
7. $z(1, \beta+1)-y(1, \beta+1)$ is a perfect square.

III. CONCLUSION

One may search for other patterns of Pythagorean triangle under consideration.

IV. REFERENCES

[1] L.E. Dickson, History of the Theory of Numbers, Chelsea Publishing Company, New York, 1952.
[2] Daniel Shanks, "Solved and Unsolved Problems in Number Theory", Spartan Books, New York, 1971.
[3] Paulo Ribenboim, "Fermat's Last Theorem for Amateurs". Sprinter-Verlag, New York, 1999.
[4] Albert H. Beiler, "Recreations in the Theory of Numbers", Dover Publications, New York, 1963.
[5] S.B. Malik, "Basic Number Theory", Vikas Publishing House Pvt. Limited, New Delhi,
[6] L.J. Mordell, Diophatine Equations, Academic Press, New York, 1969.
[7] Niven, Ivan, Zuckermann, S. Herbert, Montgomery and L.Hugh, An introduction to the Theory of Numbers, Jhon Wiley and Sons. Inc, New York, 2004.
[8] M.A. Gopalan and S. Devibala, Pythagorean Triangle: A Treassure House, Proceeding of the KMA National Seminar on Algebra, Number Theory and Applications to Codeing and Cryptanalysis, Little Flower College, Guruvayur, September 16-18, 2004.
[9] M.A. Gopalan and R. Anbuselvi, A Special Pythagorean Triangle, ActaCienciaIndica XXXI M, No. 1, p. 053, 2005.
[10] M.A. Gopalan and S. Devibala, On a Pythagorean Problem, ActaCienciaIndia XXXIIM, No. 4, p. 1451, 2006.
[11] B.L. Bhatia and SupriyaMohanty, Nasty Numbers and their Characterizations, Mathematical Education, p. 34-37, July - Sep. 1985.

